
Chapter 7. Arrays

In This Chapter

In this chapter we will learn about arrays as a way to work with sequences

of elements of the same type. We will explain what arrays are, how we

declare, create, instantiate and use them. We will examine one-dimensional

and multidimensional arrays. We will learn different ways to iterate

through the array, read from the standard input and write to the standard

output. We will give many example exercises, which can be solved using

arrays and we will show how useful they really are.

What Is an "Array"?

Arrays are vital for most programming languages. They are collections of

variables, which we call elements:

An array’s elements in C# are numbered with л, м, 2, … N-1. Those numbers

are called indices. The total number of elements in a given array we call

length of an array.

All elements of a given array are of the same type, no matter whether they

are primitive or reference types. This allows us to represent a group of

similar elements as an ordered sequence and work on them as a whole.

Arrays can be in different dimensions, but the most used are the one-

dimensional and the two-dimensional arrays. One-dimensional arrays are

also called vectors and two-dimensional are also known as matrices.

Declaration and Allocation of Memory for Arrays

In C# the arrays have fixed length, which is set at the time of their

instantiation and determines the total number of elements. Once the length of

an array is set we cannot change it anymore.

0 1 2 3 4

… … … … …
Array of 5

elements

Element

index

Element of

an array

236 Fundamentals of Computer Programming with C#

Declaring an Array

We declare an array in C# in the following way:

int[] myArray;

In this example the variable myArray is the name of the array, which is of

integer type (int[]). This means that we declared an array of integer

numbers. With [] we indicate, that the variable, which we are declaring, is an

array of elements, not a single element.

When we declare an array type variable, it is a reference, which does not

have a value (it points to null). This is because the memory for the elements

is not allocated yet.

The figure below shows how a declared array variable looks, when the

memory for elements of the array is not allocated yet:

In the program’s execution stack the variable with the name myArray is

created and its value is set to null (meaning it holds no value).

Creation of an Array – the Operator "new"

In C# we create an array with the help of the keyword new, which is used to

allocate memory:

int[] myArray = new int[6];

In this example we allocate an array with length of 6 elements of type int.

This means that in the dynamic memory (heap) an area of 6 integer numbers

is allocated and they all are initialized with the value 0:

HeapStack

myArray

HeapStack

myArray

.

.

.

0 0 0 0 0 0

0 1 2 3 4 5

Chapter 7. Arrays 237

The figure shows, that after the allocation of memory for the array the

variable myArray points to an address in the dynamic memory, where the

values are. In C#, the elements of an array are always stored in the dynamic

memory (called also heap).

During the allocation of the memory for an array we set the total number of

the elements in the brackets (a non-negative integer number), defining its

length. The type of the elements is written after the reserved word new, so we

indicate what type of elements are going to be allocated in the memory.

Array Initialization and Default Values

Before we can use an element of a given array, it has to be initialized or to

have a default value. In some programming languages there are no default

values and then if we try to access an element, which is not initialized, this

may cause an error. In C# all variables, including the elements of arrays have

a default initial value. This value is either 0 for the numeral types or its

equivalent for the non-primitive types (for example null for a reference type

and false for the bool type).

Of course we can set initial values explicitly. We can do this in different ways.

Here is one of them:

int[] myArray = { 1, 2, 3, 4, 5, 6 };

In this case we create and initialize the elements of the array at the time of

the declaration. On the figure below we see how the array is allocated in the

memory when its values are initialized at the moment of its declaration:

With this syntax we use curly brackets instead of the operator new. Between

the brackets we list the initial values of the array, separated by commas.

Their count defines the length of the array.

Declaration and Initialization of an Array – Example

Here is one more example how to declare and initialize an array:

string[] daysOfWeek =
 { "Monday", "Tuesday", "Wednesday","Thursday", "Friday",
 "Saturday", "Sunday" };

HeapStack

myArray

.

.

.

1 2 3 4 5 6

0 1 2 3 4 5

238 Fundamentals of Computer Programming with C#

In this case we allocate an array of seven elements of type string. The type

string is a reference type (object) and its values are stored in the dynamic

memory. The variable daysOfWeek is allocated in the stack memory, and

points to a section of the dynamic memory containing the elements of the

array. The type of each of these seven elements is string, which itself points

to a different section of the dynamic memory, where the real value is stored.

On this figure we see how the array is allocated in the memory:

Boundaries of an Array

Arrays are by default zero-based, which means the enumeration of the

elements starts from 0. The first element has the index 0, the second – 1,

etc. In an array of N elements, the last element has the index N-1.

Access to the Elements of an Array

We access the array elements directly using their indices. Each element can

be accessed through the name of the array and the element’s index

(consecutive number) placed in the brackets. We can access given elements

of the array both for reading and for writing, which means we can treat

elements as variables.

Here is an example for accessing an element of an array:

myArray[index] = 100;

In the example above we set a value of 100 to the element, which is at

position index.

HeapStack

daysOfWeek

…

…

…

…

…

…

…

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

0

1

2

3

4

5

6

Chapter 7. Arrays 239

Here is an example, where we allocate an array of numbers and then we

change some of them:

int[] myArray = new int[6];
myArray[1] = 1;

myArray[5] = 5;

After the change, the array is allocated in the memory as shown below:

As we can see, all elements, except those for which values are explicitly set,

are initialized with the value 0 when the memory of the array was allocated.

We can iterate through the array using a loop statement. The most common

form of such iteration is by using a for-loop:

int[] arr = new int[5];
for (int i = 0; i < arr.Length; i++)

{
 arr[i] = i;
}

Going Out of Bounds of the Array

The .NET Framework does an automatic check on each element access

attempt, whether the index is valid or it is out of the range of the array.

When we try to access an invalid (not existing) element in an array, a

System.IndexOutOfRangeException is thrown. The automatic check really

helps the developers find errors while working with arrays. Of course,

checking for exceptions has its price. Checks affect the performance, but

that’s nothing compared to avoiding errors like "out of range", "access to
unallocated memory", etc.

Here is an example, where we are trying to access an element, which is out of

the range of the array:

IndexOutOfRangeExample.cs

class IndexOutOfRangeExample

{

HeapStack

myArray

.

.

.

0 1 0 0 0 5

0 1 2 3 4 5

240 Fundamentals of Computer Programming with C#

 static void Main()
 {
 int[] myArray = { 1, 2, 3, 4, 5, 6 };

 Console.WriteLine(myArray[6]);
 }
}

In the example above we allocate an array, which contains six integer

numbers. The first index is 0, and the last index is 5. We are trying to print to

the console an element with index 6, but because there is no such element

this leads to an exception:

Reversing an Array – Example

In the next example we will access elements and change them using their

indices. The task is to print the elements in reversed order. We will reverse

the elements of the array using a second, auxiliary array, where we will keep

the elements of the first one, but in a reversed order. Note that the length of

both arrays is the same and it stays unchanged after the first allocation:

ArrayReverseExample.cs

class ArrayReverseExample

{

 static void Main()
 {
 int[] array = { 1, 2, 3, 4, 5 };

 // Get array size
 int length = array.Length;
 // Declare and create the reversed array

 int[] reversed = new int[length];

 // Initialize the reversed array

 for (int index = 0; index < length; index++)
 {
 reversed[length - index - 1] = array[index];

 }

Chapter 7. Arrays 241

 // Print the reversed array
 for (int index = 0; index < length; index++)

 {
 Console.Write(reversed[index] + " ");
 }

 }
}
// Output: 5 4 3 2 1

The example works in the following way: initially we allocate a one-

dimensional array of type int and we initialize it with the numbers from 1 to

5. After that we keep the length of the array in the variable length. Note that

we are using the property Length, which returns the total count of the

elements of the array. In C# each array has a length property.

After that we declare the array reversed with the same length, where we

will keep elements of the original array, but in a reversed order.

To reverse the elements we use a for-loop. At each iteration we increment

the index variable by one and we make sure we access all consecutive

elements of the array. The loop condition ensures that the array will be

iterated from end to end.

Let’s follow what happens when we iterate through the array. On the first

iteration, index has a value of 0. Using array[index] we access the first

element of the array, and respectively with reversed[length - index - 1]
we access the last element of the new array reversed where we assign the

values. Thus, we appropriated the value of the first element of the array to

the last element of the reversed array. At each iteration index is

incremented by one. This way, we access the next element in the order of

array and the previous element in the order of reversed.

As a result we reversed the array and printed it. In the example we showed

consecutive iterations through the array, which can also be done with

different types of loop constructs (e.g. while and foreach).

Reading an Array from the Console

Let’s see how we can read values of an array from the console. We will use a

for-loop and the .NET Framework tools for reading from the console.

Initially we read a line from the console using Console.ReadLine(), and then

we parse that line to an integer number using int.Parse() and we set it to

the variable n. We then use the number n as length of the array.

int n = int.Parse(Console.ReadLine());

int[] array = new int[n];

242 Fundamentals of Computer Programming with C#

Again we use a loop to iterate through the array. At each iteration we set the

current element to what we have read from the console. The loop will

continue n times, which means it will iterate through the array and so we will

read a value for each element of the array:

for (int i = 0; i < n; i++)
{
 array[i] = int.Parse(Console.ReadLine());

}

Check for Symmetric Array – Example

An array is symmetric if the first and the last elements are equal and at the

same time the second element and the last but one are equal as well and so

on. On the figure a few examples for symmetric arrays are shown:

In the next example we will check whether an array is symmetric:

Console.Write("Enter a positive integer: ");
int n = int.Parse(Console.ReadLine());
int[] array = new int[n];

Console.WriteLine("Enter the values of the array:");

for (int i = 0; i < n; i++)
{
 array[i] = int.Parse(Console.ReadLine());

}

bool symmetric = true;

for (int i = 0; i < array.Length / 2; i++)
{
 if (array[i] != array[n - i - 1])

 {
 symmetric = false;
 break;

 }
}

Console.WriteLine("Is symmetric? {0}", symmetric);

12321 123211221 1221 32 3 121 32 3 121

Chapter 7. Arrays 243

We initialize an array and we read its elements from the console. We need to

iterate through half of the array to check whether it is symmetric. The middle

element of the array has an index array.Length / 2. If the length is an odd

number this index is exactly the middle one, but if it is an even number, the

index is to the right of the middle (the middle is between two elements). Thus

the loop runs from 0 to array.Length / 2 (non-inclusive).

To check whether an array is symmetric, we use a bool variable, and initially

assume that the array is symmetric. During the iteration through the array we

compare the first with the last element, the second with the last but one and

so on. If at some point the compared elements are not equal, then we set the

bool variable to false, which means the array is not symmetric.

In the end we print the value of the bool variable to the console.

Printing an Array to the Console

Often we have to print the elements of a given array to the console, after

we have finished working with it.

We print elements of an array to the console similarly to the initializing of the

elements, i.e. by using a loop to iterate through the array. There are no strict

rules for printing, but often some sort of suitable formatting is used.

A frequent mistake is an attempt to print an array like a number:

string[] array = { "one", "two", "three", "four" };
Console.WriteLine(array);

Unfortunately this code does not print the elements of an array, just its

type. Here is what we get after the execution of this code:

We print the elements of an array by hand, by using a for-loop:

string[] array = { "one", "two", "three", "four" };

for (int index = 0; index < array.Length; index++)

{

 // Print each element on a separate line
 Console.WriteLine("Element[{0}] = {1}", index, array[index]);

}

244 Fundamentals of Computer Programming with C#

We are iterating through the array using the for-loop, which will go

array.Length times, and we will print the current element using

Console.WriteLine() and a formatted string. Here is the result:

Element[0] = one
Element[1] = two
Element[2] = three

Element[3] = four

Iteration through Elements of an Array

As we can see, the iteration through the elements of an array is one of the

most used techniques when we work with arrays. Consecutive iterating

using a loop will allow us to access each element through its index and we will

be able to modify it as we want. We can do that with different loop constructs,

but the most appropriate loop is the for-statement. We will examine in

details how this type of iteration works.

Iteration with a For Loop

It is a good practice to use for-loops, when we work with arrays and

structures with indices. In the following example we will double the values of

all elements of an array of numbers and we will print them:

int[] array = new int[] { 1, 2, 3, 4, 5 };

Console.Write("Output: ");
for (int index = 0; index < array.Length; index++)

{
 // Doubling the number
 array[index] = 2 * array[index];

 // Print the number

 Console.Write(array[index] + " ");
}

// Output: 2 4 6 8 10

Using a for-loop we keep track of the current index of the array and we

access the elements as needed. We do not have to iterate consecutively

through all of them, which means the index that we are using in the for-loop

may iterate through the elements in a way that our algorithm requires. For

example we can iterate through some of the elements of the array, not

through all of them:

int[] array = new int[] { 1, 2, 3, 4, 5 };

Console.Write("Output: ");

Chapter 7. Arrays 245

for (int index = 0; index < array.Length; index += 2)
{
 array[index] = array[index] * array[index];

 Console.Write(array[index] + " ");
}
// Output: 1 9 25

In this example we are iterating through all elements at even positions and

we square their values.

Sometimes we want to iterate through the array in a reverse order. We

do that in a similar way, except that the for-loop will start with the index of

the last element and the index will decrease on each step until its value gets

to 0 (inclusive). Here is an example:

int[] array = new int[] { 1, 2, 3, 4, 5 };

Console.Write("Reversed: ");

for (int index = array.Length - 1; index >= 0; index--)
{
 Console.Write(array[index] + " ");

}
// Reversed: 5 4 3 2 1

In this example we are iterating through the array in reverse order and we

print each element to the console.

Iteration with "foreach" Loop

One of the most used constructs for iterating through elements of an array is

foreach. The foreach-loop construct in C# is as follows:

foreach (var item in collection)

{
 // Process the value here

}

In this programming construct var is the type of the elements, which we

iterate through. The collection is the array (or any other collection of

elements) and item is the current element of the array on each step.

In general the foreach loop construct has the same properties like the for-

loop. The main difference is that the iteration is made always through all

elements – from the start to the end. We cannot access the current index,

we are just iterating through the collection in a way, defined by the collection

itself. For arrays the order of iteration is consecutive from the first element to

246 Fundamentals of Computer Programming with C#

the last one. The loop variable in foreach-loops is read-only so we cannot

modify the current loop item from the loop body.

The foreach-loop statement is used, when we do not need to change the

elements, but just to read them.

Iteration with "foreach" Loop – Example

In the next example we will learn how to use the foreach loop to iterate

through the array:

string[] capitals =
 { "Sofia", "Washington", "London", "Paris" };

foreach (string capital in capitals)
{
 Console.WriteLine(capital);

}

After we declared an array of strings capitals, we iterate through the array

using foreach loop and we print the elements to the console. The current

element on each step is stored in a variable capital. We get the following

result when we execute the code:

Sofia
Washington

London
Paris

Multidimensional Arrays

The one-dimensional arrays are known also as vectors in mathematics.

Often we need arrays with more than one dimension. For example we can

easily represent the standard chess board as a two-dimensional array with

size 8 by 8 (8 cells in a horizontal direction and 8 cells in a vertical direction).

What Is a Multidimensional Array? What Are

Matrices?

Every valid type in C# can be used for a type of an array. So, we can have an

array of arrays, which we will discuss later.

We declare a one-dimensional array of integer numbers using int[], and we

declare a two-dimensional with int[,]. This example shows that:

int[,] twoDimensionalArray;

Chapter 7. Arrays 247

Those arrays we will call two-dimensional, because they have two

dimensions. They are also known as matrices (it is mathematical term). In

general arrays with more than one dimension we will call multidimensional.

This way we can declare three-dimensional arrays as we add one more

dimension:

int[,,] threeDimensionalArray;

In theory there is no limit for an array dimensions, but in practice we do

not use much arrays with more than two dimensions therefore we will focus

on two-dimensional arrays.

Multidimensional Array Declaration and Allocation

We declare multidimensional arrays in a way similar to one-dimensional

arrays. Each dimension except the first is marked with comma:

int[,] intMatrix;
float[,] floatMatrix;

string[,,] strCube;

In the example above we create two-dimensional and three-dimensional

arrays. Each dimension is represented by a comma in the square brackets [].

We are allocating memory for multidimensional arrays by using the keyword

new and for each dimension we set a length in the brackets as shown:

int[,] intMatrix = new int[3, 4];
float[,] floatMatrix = new float[8, 2];
string[,,] stringCube = new string[5, 5, 5];

In this example intMatrix is a two-dimensional array with 3 elements of type

int[] and each of those 3 elements has a length of 4. Two-dimensional

arrays are difficult to understand explained that way. Therefore we can

imagine them as two-dimensional matrices, which have rows and columns

for the dimensions:

The rows and the columns of the square matrices are numbered with indices

from 0 to n-1. If a two-dimensional array has a size of m by n, there are

exactly m*n elements.

1 3 6 2

8 5 9 1

4 7 3 0

0

1

0

2

1 2 3

248 Fundamentals of Computer Programming with C#

Two-Dimensional Array Initialization

We initialize two-dimensional arrays in the same way as we initialize one-

dimensional arrays. We can list the element values straight after the

declaration:

int[,] matrix =
{

 {1, 2, 3, 4}, // row 0 values
 {5, 6, 7, 8}, // row 1 values
};

// The matrix size is 2 x 4 (2 rows, 4 cols)

In the example above we initialize a two-dimensional array of type

integer with size of 2 rows and 4 columns. In the outer brackets we place the

elements of the first dimension, i.e. the rows of the array. Each row contains

one dimensional array, which we know how to initialize.

Accessing the Elements of a Multidimensional Array

Matrices have two dimensions and respectively we access each element by

using two indices: one for the rows and one for the columns. Multidimensional

arrays have different indices for each dimension.

Each dimension in a multidimensional array starts at index 0.

Let’s examine the next example:

int[,] matrix =
{

 {1, 2, 3, 4},
 {5, 6, 7, 8},

};

The array matrix has 8 elements, stored in 2 rows and 4 columns. Each

element can be accessed in the following way:

matrix[0, 0] matrix[0, 1] matrix[0, 2] matrix[0, 3]
matrix[1, 0] matrix[1, 1] matrix[1, 2] matrix[1, 3]

In this example we can access each element using indices. If we assign the

index for rows to row, and the index for columns to col, then we can access

any element as shown:

matrix[row, col]

Chapter 7. Arrays 249

When we use multidimensional arrays each element is unique and can be

identified with indices from the array:

nDimensionalArray[indexɨ, …, indexN]

Length of Multidimensional Arrays

Each dimension of a multidimensional array has its own length, which can be

accessed during the execution of the program. Let’s look at an example for a

two-dimensional array:

int[,] matrix =

{
 {1, 2, 3, 4},
 {5, 6, 7, 8},

};

We can get the number of the rows of this two-dimensional array by using

matrix.GetLength(0) and the number of all columns per row with

matrix.GetLength(1). So, in this case matrix.GetLength(0) returns 2 and

matrix.GetLength(1) returns 4.

Printing Matrices – Example

In the next example we will demonstrate how we can print two-dimensional

arrays to the console:

// Declare and initialize a matrix of size 2 x 4
int[,] matrix =

{
 {1, 2, 3, 4}, // row 0 values
 {5, 6, 7, 8}, // row 1 value

};

// Print the matrix on the console

for (int row = 0; row < matrix.GetLength(0); row++)
{
 for (int col = 0; col < matrix.GetLength(1); col++)

 {
 Console.Write(matrix[row, col]);
 }

 Console.WriteLine();

}

First we declare and initialize an array, which we want to iterate through and

print to the console. The array is two-dimensional, therefore we use a for-

250 Fundamentals of Computer Programming with C#

loop which will iterate through the rows and a nested for loop which for each

row will iterate through the columns. At each iteration we will print the

current element using the appropriate method to access this element by using

its two indices (row and column). Finally, if we execute this piece of code we

will get the following result:

1 2 3 4
5 6 7 8

Reading Matrices from the Console – Example

In this example we will learn how to read a two-dimensional array from

the console. First, we read the values (lengths) of the two-dimensions and

then by using two nested loops we assign the value of each element (and in

the end we print out the values of the array):

Console.Write("Enter the number of the rows: ");
int rows = int.Parse(Console.ReadLine());

Console.Write("Enter the number of the columns: ");
int cols = int.Parse(Console.ReadLine());

int[,] matrix = new int[rows, cols];

Console.WriteLine("Enter the cells of the matrix:");

for (int row = 0; row < rows; row++)

{
 for (int col = 0; col < cols; col++)
 {

 Console.Write("matrix[{0},{1}] = ",row, col);
 matrix[row, col] = int.Parse(Console.ReadLine());

 }

}

for (int row = 0; row < matrix.GetLength(0); row++)

{
 for (int col = 0; col < matrix.GetLength(1); col++)
 {

 Console.Write(" " + matrix[row, col]);
 }
 Console.WriteLine();

}

The program output when we execute it (in this case the array consists of

three rows and two columns) is:

Chapter 7. Arrays 251

Enter the number of the rows: 3
Enter the number of the columns: 2
Enter the cells of the matrix:

matrix[0,0] = 2
matrix[0,1] = 3
matrix[1,0] = 5

matrix[1,1] = 10
matrix[2,0] = 8
matrix[2,1] = 9

 2 3
 5 10

 8 9

Maximal Platform in a Matrix – Example

In the next example we will solve another interesting problem: we are given a

two-dimensional rectangular array (matrix) of integers and our task is to find

the sub-matrix of size of 2 by 2 with maximum sum of its elements and

to print it to the console.

One solution to the problem might be the following:

MaxPlatform2x2.cs

class MaxPlatform2x2
{
 static void Main()

 {
 // Declare and initialize the matrix
 int[,] matrix = {

 { 0, 2, 4, 0, 9, 5 },
 { 7, 1, 3, 3, 2, 1 },

 { 1, 3, 9, 8, 5, 6 },

 { 4, 6, 7, 9, 1, 0 }
 };

 // Find the maximal sum platform of size 2 x 2
 long bestSum = long.MinValue;
 int bestRow = 0;

 int bestCol = 0;

 for (int row = 0; row < matrix.GetLength(0) - 1; row++)

 {
 for (int col = 0; col < matrix.GetLength(1) - 1; col++)
 {

252 Fundamentals of Computer Programming with C#

 long sum = matrix[row, col] + matrix[row, col + 1] +
 matrix[row + 1, col] + matrix[row + 1, col + 1];
 if (sum > bestSum)

 {
 bestSum = sum;
 bestRow = row;

 bestCol = col;
 }
 }

 }

 // Print the result

 Console.WriteLine("The best platform is:");
 Console.WriteLine(" {0} {1}",
 matrix[bestRow, bestCol],

 matrix[bestRow, bestCol + 1]);
 Console.WriteLine(" {0} {1}",
 matrix[bestRow + 1, bestCol],

 matrix[bestRow + 1, bestCol + 1]);
 Console.WriteLine("The maximal sum is: {0}", bestSum);
 }

}

If we execute the program, we will see that it works properly:

The best platform is:
 9 8
 7 9

The maximal sum is: 33

We will explain the algorithm. First we create a two-dimensional array, which

contains integer numbers. We declare our auxiliary variables bestSum,

bestRow, bestCol and we initialize bestSum with the minimal value of type

long (so any other value is greater than this one). Note that sum of 4

integers may not fit in int, so we use long.

In the variable bestSum we keep the current maximal sum and in bestRow

and bestCol we keep the current best sub-matrix. This means the current

row and current column describe the start element for the sub-matrix of size

2 x 2, which is currently found to have the maximal sum of its elements.

To access all elements of a sub-array with a size of 2 by 2 we need the indices

of the first element. Having them we can easily access the rest 3 elements:

matrix[row, col]
matrix[row, col + 1]

Chapter 7. Arrays 253

matrix[row + 1, col]
matrix[row + 1, col + 1]

In this example row and col are the indices of the first element of the sub-

matrix with a size of 2 by 2, which is part of the array matrix.

After we know how to access all four elements of the matrix with a size of 2

by 2, starting from a particular row and column, we can look at the algorithm,

which we will use to find the maximal sub-matrix.

We need to iterate through each 2 x 2 platform in the matrix until we reach

the platform with the best sum. We will do this using two nested for-loops

and two variables row and col. Note that we are not iterating through the

entire matrix, because if we try to access index row + 1 or col + 1, as we

are at the last row or column we will go out of the range of the matrix,

respectively System.IndexOutOfRangeException will be thrown.

We access the neighbor elements of each current element of the sub-matrix

and we sum them. Then we check if our current sum is bigger than our

current highest sum for the moment. If it is so, our current sum becomes our

best sum and our current indices will update bestRow and bestCol. So, after

the entire iteration through the main matrix we will find the maximal sum and

the first element of the sub-matrix of size 2 by 2 and its indices.

If there is more than one sub-matrix with the same maximal sum, we will find

the one, which appears first.

At the end of the example we are printing to the console the requested sub-

matrix of size 2 x 2 and its sum of elements in an appropriate way.

Arrays of Arrays

In C# we can have arrays of arrays, which we call jagged arrays.

Jagged arrays are arrays of arrays, or arrays in which each row contains an

array of its own, and that array can have length different than those in the

other rows.

Declaration and Allocation an Array of Arrays

The only difference in the declaration of the jagged arrays compared to the

regular multidimensional array is that we do not have just one pair of

brackets. With the jagged arrays we have a pair brackets per dimension. We

allocate them this way:

int[][] jaggedArray;

jaggedArray = new int[2][];
jaggedArray[0] = new int[5];

jaggedArray[1] = new int[3];

254 Fundamentals of Computer Programming with C#

Here is how we declare, allocate and initialize an array of arrays (a jagged

array whose elements are arrays of integer values):

int[][] myJaggedArray = {
 new int[] {5, 7, 2},

 new int[] {10, 20, 40},
 new int[] {3, 25}
};

Memory Allocation

The figure below depicts how the now declared jagged array myJaggedArray

is allocated in the memory. As we see the jagged arrays are an aggregation of

references. A jagged array does not directly contain any arrays, but rather

has elements pointing to them. The size is unknown and that is why CLR

just keeps references to the internal arrays. After we allocate memory for one

array-element of the jagged array, then the reference starts pointing to the

newly created block in the dynamic memory. The variable myJaggedArray is

stored in the execution stack of the program and points to a block in the

dynamic memory, which contains a sequence of three references to other

three blocks in memory; each of them contains an array of integer numbers –

the elements of the jagged array:

Initialization and Access to the Elements

We can access elements of the arrays, which are part of the jagged array by

using their index. In next example we will access the element with index 3 of

the array stored at index 0 in the myJaggedArray declared above:

myJaggedArray[0][2] = 45;

The elements of the jagged array can be one-dimensional and multi-

dimensional arrays. Here is an example for jagged array of two-dimensional

arrays:

int[][,] jaggedOfMulti = new int[2][,];

2010 40

75 2

253

HeapStack

myJaggedArray

Chapter 7. Arrays 255

jaggedOfMulti[0] = new int[,] { { 5, 15 }, { 125, 206 } };
jaggedOfMulti[1] = new int[,] { { 3, 4, 5 }, { 7, 8, 9 } };

Pascal’s Triangle – Example

In the next example we will use a jagged array to generate and visualize the

Pascal’s triangle. As we know from mathematics, the first row of the

triangle contains the number 1 and each next number is generated by sum of

the two numbers on the row above it. The Pascal’s triangle looks like this:

 1

 1 1
 1 2 1

 1 3 3 1
1 4 6 4 1
 . . .

To have a Pascal’s triangle with a given height, for example м2, we allocate a
jagged array triangle[][], which contains 1 element on the zero row, 2 –

on first, 3 – on second and so on. First we initialize triangle[0][0] = 1 and

the rest of the cells will have a default value than 0 by allocation. Then we

loop through the rows and from row we will get the values for row+1. It works

with nested for loop through the columns on the current row and the

following Pascal definitions for values in the triangle: we add the value of the

current cell of the current row (triangle[row][col]) to the cell below

(triangle[row+1][col]) and to the cell below on the right (triangle

[row+1][col+1]). We print using an appropriate number of spaces (using

method PadLeft () of class String), because we want the result to be

aligned.

Here is the code of the described algorithm:

PascalTriangle.cs

class PascalTriangle
{
 static void Main()

 {
 const int HEIGHT = 12;

 // Allocate the array in a triangle form
 long[][] triangle = new long[HEIGHT + 1][];

 for (int row = 0; row < HEIGHT; row++)
 {

256 Fundamentals of Computer Programming with C#

 triangle[row] = new long[row + 1];
 }

 // Calculate the Pascal's triangle
 triangle[0][0] = 1;
 for (int row = 0; row < HEIGHT - 1; row++)

 {
 for (int col = 0; col <= row; col++)
 {

 triangle[row + 1][col] += triangle[row][col];
 triangle[row + 1][col + 1] += triangle[row][col];

 }

 }

 // Print the Pascal's triangle

 for (int row = 0; row < HEIGHT; row++)
 {
 Console.Write("".PadLeft((HEIGHT - row) * 2));

 for (int col = 0; col <= row; col++)
 {
 Console.Write("{0,3} ", triangle[row][col]);

 }
 Console.WriteLine();
 }

 }
}

If we execute the program, we will see that it is working properly and it

generates a Pascal’s triangle by a given numbers of rows (in our case the

HEIGHT is 12):

 1
 1 1
 1 2 1

 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1

 1 6 15 20 15 6 1
 1 7 21 35 35 21 7 1
 1 8 28 56 70 56 28 8 1

 1 9 36 84 126 126 84 36 9 1

 1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

Chapter 7. Arrays 257

Exercises

1. Write a program, which creates an array of 20 elements of type

integer and initializes each of the elements with a value equals to the

index of the element multiplied by 5. Print the elements to the console.

2. Write a program, which reads two arrays from the console and checks

whether they are equal (two arrays are equal when they are of equal

length and all of their elements, which have the same index, are equal).

3. Write a program, which compares two arrays of type char

lexicographically (character by character) and checks, which one is first

in the lexicographical order.

4. Write a program, which finds the maximal sequence of consecutive
equal elements in an array. E.g.: {1, 1, 2, 3, 2, 2, 2, 1}  {2, 2, 2}.

5. Write a program, which finds the maximal sequence of consecutively

placed increasing integers. Example: {3, 2, 3, 4, 2, 2, 4}  {2, 3, 4}.

6. Write a program, which finds the maximal sequence of increasing

elements in an array arr[n]. It is not necessary the elements to be

consecutively placed. E.g.: {9, 6, 2, 7, 4, 7, 6, 5, 8, 4}  {2, 4, 6, 8}.

7. Write a program, which reads from the console two integer numbers N

and K (K<N) and array of N integers. Find those K consecutive

elements in the array, which have maximal sum.

8. Sorting an array means to arrange its elements in an increasing (or

decreasing) order. Write a program, which sorts an array using the

algorithm "selection sort".

9. Write a program, which finds a subsequence of numbers with
maximal sum. E.g.: {2, 3, -6, -1, 2, -1, 6, 4, -8, 8}  11

10. Write a program, which finds the most frequently occurring element in

an array. Example: {4, 1, 1, 4, 2, 3, 4, 4, 1, 2, 4, 9, 3}  4 (5 times).

11. Write a program to find a sequence of neighbor numbers in an array,

which has a sum of certain number S. Example: {4, 3, 1, 4, 2, 5, 8},
S=11  {4, 2, 5}.

12. Write a program, which creates square matrices like those in the

figures below and prints them formatted to the console. The size of the

matrices will be read from the console. See the examples for matrices

with size of 4 x 4 and make the other sizes in a similar fashion:

258 Fundamentals of Computer Programming with C#

13. Write a program, which creates a rectangular array with size of n by m
elements. The dimensions and the elements should be read from the

console. Find a platform with size of (3, 3) with a maximal sum.

14. Write a program, which finds the longest sequence of equal string

elements in a matrix. A sequence in a matrix we define as a set of

neighbor elements on the same row, column or diagonal.

15. Write a program, which creates an array containing all Latin letters.

The user inputs a word from the console and as result the program

prints to the console the indices of the letters from the word.

16. Write a program, which uses a binary search in a sorted array of

integer numbers to find a certain element.

17. Write a program, which sorts an array of integer elements using a "merge

sort" algorithm.

18. Write a program, which sorts an array of integer elements using a "quick

sort" algorithm.

19. Write a program, which finds all prime numbers in the range

[м…мл,ллл,ллл].

20. * Write a program, which checks whether there is a subset of given

array of N elements, which has a sum S. The numbers N, S and the array

values are read from the console. Same number can be used many times.

Example: {2, 1, 2, 4, 3, 5, 2, 6}, S = 14  yes (1 + 2 + 5 + 6 = 14)

21. Write a program which by given N numbers, K and S, finds K elements out

of the N numbers, the sum of which is exactly S or says it is not possible.

Example: {3, 1, 2, 4, 9, 6}, S = 14, K = 3  yes (1 + 2 + 4 = 14)

1010663311

1313995522

151512128844

16161414111177

1010663311

1313995522

151512128844

16161414111177

77665544

881515141433

991616131322

10101111121211

77665544

881515141433

991616131322

10101111121211

131312125544

141411116633

151510107722

1616998811

131312125544

141411116633

151510107722

1616998811

161612128844

151511117733

141410106622

1313995511

161612128844

151511117733

141410106622

1313995511

b)b)b)

d)*d)*d)*c)c)c)

a)a)a)

ha fifi ho hi

fo ha hi xx

xxx ho ha xx

s qq s

pp pp s

pp qq s

ha, ha, ha s, s, s

Chapter 7. Arrays 259

22. Write a program, which reads an array of integer numbers from the

console and removes a minimal number of elements in such a way

that the remaining array is sorted in an increasing order.

Example: {6, 1, 4, 3, 0, 3, 6, 4, 5}  {1, 3, 3, 4, 5}

23. Write a program, which reads the integer numbers N and K from the

console and prints all variations of K elements of the numbers in the

interval [ɨ…N]. Example: N = 3, K = 2  {1, 1}, {1, 2}, {1, 3}, {2, 1},

{2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3}.

24. Write a program, which reads an integer number N from the console and

prints all combinations of K elements of numbers in range [1 … N].

Example: N = 5, K = 2  {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4},

{2, 5}, {3, 4}, {3, 5}, {4, 5}.

25. *Write a program, which finds in a given matrix the largest area of

equal numbers. We define an area in the matrix as a set of neighbor

cells (by row and column). Here is one example with an area containing

13 elements with equal value of 3:

Solutions and Guidelines

1. Use an int[] array and a for-loop.

2. Two arrays are equal if they have the same value for the length and the

values for their elements. You can check for the second condition

using a for-loop.

3. In lexicographic order the elements are compared one by one

starting from the very left. If the elements are not the same, the array,

whose element is smaller (comes earlier in the alphabet), comes first. If

the elements are equal, the next character is compared. If the end of one

of the arrays is reached, without finding different elements, the shorter

array is the smaller (comes earlier lexicographically). If all elements are

equal, the arrays are equal.

4. Scan the array from left to right. Every time when the current number

is different from the one before it, a new sequence starts. If the

current element is equal to the one before it, it is a continuation of the

same sequence. So, if we keep the index of the start position of the

current sequence (in the beginning it is 0) in start and the length of

the current sequence (in the beginning it is 1) in len, we can find all

33

33

33

33

33

33

11

11

33

22

33332244

11333344

11113344

44442233

44222211

33

33

33

33

33

33

11

11

33

22

33332244

11333344

11113344

44442233

44222211

131313

260 Fundamentals of Computer Programming with C#

sequences of equal elements and their lengths. We can easily keep the

shortest one in two additional variables – bestStart and bestLen.

5. This exercise is very similar to the previous one, but we have a

continuation of the current sequence when the next element is bigger.

6. We can solve the problem with two nested loops and one more array

len[0…n-1]. In the array len[i] we can keep the length of the longest

consecutively increasing sequence, which starts somewhere in the array

(it does not matter where exactly) and ends with the element arr[i].

Therefore len[0]=1, len[x] is the maximal sum max(1 + len[prev]),

where prev < x and arr[prev] < arr[x]. Following the definition, we can

calculate len[0…n-1] with two nested loops: the outer loop will iterate

through the array from left to right with the loop variable x. The inner

loop will iterate through the array from the start to position x-1 and

searches for the element prev with maximal value of len[prev], where

arr[prev] < arr[x]. After the search, we initialize len[x] with 1 + the

biggest found value of len[prev] or with 1, if such a value is not found.

The described algorithm finds the lengths of all maximal ascending

sequences, which end at each of the elements. The biggest one of these

values is the length of the longest increasing sequence. If we need to

find the elements themselves, which compose that longest sequence,

we can start from the element, where the sequence ends (at index x), we

can print it and we can search for a previous element (prev). By

definition prev < x and len[x] = 1 + len[prev] so we can find prev with

a for-loop from 1 to x-1. After that we can repeat the same for x=prev.

By finding and printing the previous element (prev) many times until it

exists, we can find the elements, which compose the longest

sequence in reversed order (from the last to the first).

7. You can find out which sequence of the sequences of K numbers has the

biggest sum by checking the sums of all of those sequences. The

first sequence starts at index 0 and finishes at index K-1 and has sum S.

Then the second one starts at index 1 and ends at index K and we can

find its sum using S by subtracting the element at index 0 and adding the

element at index K. In this way we can reach the end of the sequence.

8. Find in Internet information about "Selection sort" and its C#

implementations. Briefly the idea is to find the smallest element and to

place it at position 0 (through swapping) then to find the smallest

number excluding the first and place it at position 1 and so on, until the

entire array is arranged in ascending order.

9. There are two ways to solve this problem. The first way is to use brute

force method, which in this case means that using two nested loops

we check every possible start and end and its corresponding sum.

The second way is to use one loop through the array to scan it from

left to right and sum the elements. Once we get a negative sum, we can

Chapter 7. Arrays 261

restart summing from the next element. Think why this is correct! At

each step we check if the current sum is greater than the current max.

10. This exercise can be solved in a couple of ways. One of them is the

following: get the first number and check how many times it is repeated

in the array and store this number in a variable. After a repeated number

is found we change its value to int.MinValue. Then pass to the next

number and do the same with it. The current number is remembered if

its occurrences are maximal. As you may guess, when a number equal to

int.MinValue is found (already processed number) we should skip it.

Another solution is to sort the numbers in ascending order and then the

elements with same value will be placed next to each other. So, basically

we then find the longest sequence of neighbor equal elements.

11. This exercise can be solved with two nested loops. The first loop

assigns a starting index. The second loop sums the elements from the

starting index to the right until this partial sum reaches or is greater than

S. If the sum is equal to S, we will remember the starting index (from the

first loop) and the ending index (from the second loop).

If all numbers are positive, there is a much faster algorithm. We sum

all numbers from left to the right, starting from zero. If the current

sum becomes greater than S during the summation, we remove the

leftmost number in the sequence and we subtract it from the sum. If the

current sum is still greater than S, we remove the next leftmost number

and do that until the current sum becomes smaller than S. When the sum

becomes smaller than S we add the next number on right. If we find a

sum equal to S, we print the sum and the sequence to the console. So

this solution uses just with one scan through the elements in the array.

12. a), b), c) Think about appropriate ways for iterating through the

matrices with two nested loops.

d) We can start from (0, 0) and go down N times. Therefore, go to the

right N-1 times, after that up N-1 times, after that left N-2 times,

after that down N-2 times and etc. At each iteration we place the next

number in a sequence м, 2, о, …, N in the cell, which we are leaving.

13. Modify the example about maximal platform with size of 2 by 2.

14. Check every element in a diagonal line, a row and a column until you get

a sequence. If you get a sequence, check whether this sequence is

longer than the currently longest sequence.

15. We can solve this problem with two nested for-loops (one for the

words and one for the letters of the current word). There is a solution

without using an array: we can calculate the index of a given uppercase

Latin letter ch using the expression: (int) ch – (int) 'A'.

16. Find on the Internet information about the algorithm "binary search".

Note that binary search works only on sorted arrays.

262 Fundamentals of Computer Programming with C#

17. Find on the Internet information about the algorithm "merge sort" and

its implementations in C#. It is a bit complicated to write merge sort

efficiently. You can have 3 preallocated arrays when merging arrays:

two arrays for keeping the numbers for merging and Ȉ result

array. Thus you will never allocate new arrays during the algorithm’s
execution. The arrays will be allocated just once at the start and you will

just change their purpose (swap them) during the algorithm execution.

18. Find information about the "quick sort" algorithm in Internet and its

C# implementations. It can be best implemented by using recursion.

See the chapter “Recursion” to read about recursive algorithms.

Generally at each step you choose an element called pivot and reorder

the array into two sections: at the left side move all elements ≤ pivot
and at the right side move all elements > pivot. Finally run the

quicksort algorithm recursively over the left and the right sides.

19. Find on the Internet information about "The sieve of Erathostenes"

(you have probably heard about it in math classes in high-school).

20. Generate all possible sums this way: take all the numbers and mark

them as "possible sum". Then take every number ko, k2, …, kn-1 and for

each already marked "possible sum" p, mark as possible the sum p+ki. If
at some step you get S, a solution is found. You can keep track of the

"possible sums" either in a bool[] array possible[], where each index

is a possible sum, or in a more complex data structure like Set<int>.

Once you have possible[S] == true, you can find a number ki such

that possible[S-ki] == true, print ki and subtract it from S. Repeat the

same to find the next ki and print and subtract is again, until S reaches 0.

Another algorithm: generate all possible subsets of the numbers by

a for-loop from 0 to 2N-1. If we have a number p, take its binary

representation (which consists of exactly N bits) and sum the numbers

that correspond to 1 in the binary representation of p (with a nested

loop from 0 to N-1). Thus all possible sums will be generated and if some

of them is S, it can be printed. Note that this algorithm is slow (needs

exponential time and cannot run for 100 or 1000 elements). It also does

not allow using the same array element twice in the sum.

21. See the previous problem. Generate all subsets of exactly K

elements (the second algorithm) and check if their sum is equal to S.

Try in the first algorithm to think how to keep the count of the numbers

used in the sum in order to take exactly K numbers. Can you define a

matrix possible[p, n] to keep whether the number p can be obtained as

a sum of the first n numbers (the numbers ko, k2, …, kn-1)?

22. Use dynamic programming to find the longest increasing sub-

sequence in the input sequence arr[], just like in problem #6. The

elements not included in the maximal increasing sequence should be

removed in order the array to become sorted.

Chapter 7. Arrays 263

23. Start from the first variation in the lexicographical order: {1, 1, …} K

times. Think of this as k-digit number. To obtain the next variation,

increase the last digit. If it becomes greater than N, change it to 1 and

increase the next digit on the left. Do the same on the left until the first

digit goes greater than N.

24. Modify the algorithm from the previous problem in the following way:

start from {м, 2, …, N} and increase the last digit (with the digits at the

left when required), but always keep all elements in the array in

ascending order (element p[i] should start increasing from p[i-1]+1).

25. This is a little bit more difficult. You can use different graph traversal

algorithms like "DFS" (Depth-First-Search) and "BFS" (Breadth-

First-Search) to go through all the cells in certain area starting from any

cell that belongs to it. If you have an area traversal algorithm (like

DFS), run it several times starting from unvisited cell and mark the cells

of the traversed area as visited. Repeat this until all cells become

visited. Read later in this book about DFS and BFS in the chapter “Trees
and Graphs” or find information about these algorithms in Internet.

